BIFERROCENIUM TETRABROMOFERRATE, [(C55 $\left.\mathrm{H}_{5}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mid \mathrm{FeBr}_{4}$. THE X-RAY STRUCTURAL CHARACTERIZATION OF A MIXED-VALENCE COMPOUND

STEVEN J. GEIB, ARNOLD L. RHFINGOLD *,
Department of Chemistry, University of Delaware, Newark, Delaware 19716 (U.S.A.)
TENG-YUAN DONG and DAVID N. HENDRICKSON
School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801 (U.S.A.)

(Rcceived March 31st, 1986)

Abstract

Summary

Biferrocenium tetrabromoferrate, $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \mathrm{FeBr}_{4}$ (1) obtained as a by-product in the synthesis of biferrocenium trihalide salts, crystallizes in the noncentrosymmetric orthorhombic space group, $P 2_{1} 2_{1} 2_{1}$: (at 296 K) a $7.492(2), b 9.903$ (2), c 31.604(9) $\AA, V 2345(1) \AA^{3}$, and $Z=4$. The cation, similar to other structurally characterized biferrocenium salts, adopts a trans-configuration, but, in contrast, possesses no crystallographically imposed symmetry relating the two ferrocenyl environments. Different average Fe-ring distances at the two environments: $\mathrm{Fe}(1), 2.02(2)$ and $\mathrm{Fe}(2), 2.08(2) \AA$ are typical of iron(II) and iron(III) states, respectively, indicating the presence of trapped oxidation states. Interionic contacts are both shorter and more numerous for the iron(III) ferrocenyl fragment than for the iron(II) fragment. Both ferrocenyl units have non-eclipsed ring configurations, with a staggering angle of $6.5(3)^{\circ}$ at $\mathrm{Fe}(1)$ and $23.5(3)^{\circ}$ at $\mathrm{Fe}(2)$. The $\mathrm{FeBr}_{4}{ }^{-}$counterion is tetrahedral and ordered.

Introduction

Interest in the electron transfer process in systems where a considerable distance separates the donor and acceptor sites has been very recently focused on mixed valence, $\mathrm{Fe}^{\mathrm{II}}-\mathrm{Fe}^{\text {III }}$, biferrocenium salts $[1,2]$. The results from the three structurally characterized biferrocenium triiodide salts, $\left[\left(\mathrm{RC}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}\right]_{2} \mathrm{I}_{3}(2, \mathrm{R}=\mathrm{H},[1,2]$; 3, $R=n$-propyl [3] and 4, $\mathbf{R}=$ n-butyi [2]) show a structural equivalence in Fe sites at room temperature, but different Fe environments below 200 K ; these conclusions are supported by variable-temperature Mössbauer spectroscopy data [1-3]. In the
course of preparing mixed-halogen, biferrocenium trihalide salts, a by-product, biferrocenium tetrabromoferrate $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}_{2} \mathrm{FeBr}_{4}\right.$ (1) was prepared, and provided an opportunity to examine the structure of a biferrocenium salt with an anion other than triiodide. Whereas crystallographically imposed inversion centers in the room-temperature structures of 2-4 create equivalency in the two Fe centers, 1 crystallizes without restriction. The imposed symmetry for 2 requires the presence of disorder in the Fe coordination spheres (and in the anion as well) to accommodate the different Fe -ring distances for the two oxidation states (about $0.04 \AA$). Additionally, 1, containing the isotropic tetrahedral $\mathrm{FeBr}_{4}{ }^{-}$counterion, would be less susceptible to anion distortion (disorder) than I_{3}^{-}which can adopt an $I_{2}-I^{-}$ structure [2].

Experimental

Synthesis

A sample of biferrocene was prepared as described previously [2].. The crystal of 1 used in the present study resulted from attempts to grow crystals of biferrocenium dibromoiodate, which was prepared in the following manner. A solution of 0.1 M HIBr_{2} was prepared by mixing 1.03 g IBr and 0.81 ml aqueous $50 \% \mathrm{HBr}$ in a 50 ml volumetric flask, and then diluting to the mark with methanol. Biferrocenium dibromoiodate $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Fe}_{2}\right)\left(\mathrm{Br}_{2} \mathrm{I}\right)$ was prepared by dissolving biferrocene and a stoichiometric amount of p-benzoquinone in hexane/benzene $(1 / 2)$ at $0^{\circ} \mathrm{C}$. To this solution a stoichiometric amount of $0.1 \mathrm{M} \mathrm{HIBr} 2 /$ methanol solution was added with rapid stirring. The resulting microcrystalline solid was filtered, washed with a little cold benzene, and vacuum dried. Found: $\mathrm{C}, 36.43 ; \mathrm{H}, 2.60 ; \mathrm{Fe}, 16.90$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Fe}_{2} \mathrm{IBr}_{2}$ calcd.: $\mathrm{C}, 36.58 ; \mathrm{H}, 2.76 ; \mathrm{Fe}, 17.01 \%$.

A crystal of 1 was grown by diffusing hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of biferrocenium dibromoiodate. In the process it was always found that a large majority of the solid was amorphous. Several other crystallization techniques failed to give appreciable quantities of crystalline 1.

Collection of diffraction data

The parameters used during the collection of diffraction data are reported in Table 1. The crystal, a thin blue-black plate ($0.02 \times 0.28 \times 0.31 \mathrm{~mm}$), was attached to a fine glass fiber with epoxy cement. The compound was found to crystallize in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. Unit-cell dimensions were derived from the least-squares fit of the angular settings of 25 reflections with $20 \leqslant 2 \theta \leqslant 30$. The data were corrected for absorption by an empirical procedure which refines three parameters to fit a thin plate. Reflections making a small $\left(\leqslant 3^{\circ}\right)$ glancing angle to the principal face ($0,0,1$), for which significant edge effect intensity distortions are expected, were discarded (201 reflections). A profile fitting procedure was appiied to all intensity data to improve the precision of the measurement of weak reflections.

Solution and refinement of the structure

The structure was solved by direct methods (SOLV) which located the three Fe and four Br atoms. The remaining non-hydrogen atoms were located from subsequent difference Fouricr syntheses. All non-hydrogen atoms were refined anisotropically except for atoms $C(4)$ and $C(6)$. Hydrogen atom positions were calculated

TABLE 1
CRYSTAL, DATA COLLECTION AND REFINEMENT PARAMETERS FOR C $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Fe}_{3} \mathrm{Br}_{4}$

(a) Crystal parameters			
Formula	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Fe}_{3} \mathrm{Br}_{4}$	V, \AA^{3}	2345(1)
Crystal system	orthorhombic	Z	4
Space group	P2, $\mathbf{2 1}_{1}{ }_{1}$	ρ (calcd), $\mathrm{g} \mathrm{cm}^{-3}$	2.11
a, \AA	7.492(2)	temp., ${ }^{\circ} \mathrm{C}$	23
b, \AA	9.903(2)	μ, cm^{-1}	91.0
c, \AA	31.604(9)		
(b) Data collection			
Diffractometer	Nicolet R3	R (int), \%	1.51
Radiation	Mo- $K_{\alpha}(\lambda 0.71073$ A $)$	reflections collected	3362
Monochromator	graphite	unique data	2876
Scan technique	$\theta-2 \theta$	unique data, 30(F_{0})	1911
2θ scan range, deg	$4^{\circ} \leqslant 2 \theta \leqslant 45^{\circ}$	standard reflections	3 std/197 rfins
Data collected \max / min transm.	$\begin{aligned} & \pm h,+k,+l \\ & 0.827 / 0.304 \end{aligned}$	decay	$\leqslant 1 \%$
(c) Refinement			
R_{F}, \%	5.93	GOF	1.29
$R_{w F}$, \%	5.71	data/parametcr	8.31

TABLE 2
ATOMIC COORDINATES ($\times 10^{4}$) AND ISOTROPIC THERMAL PARAMETERS $\left(\AA^{2} \times 10^{3}\right)$

Atom	x	y	z	$U^{\text {a }}$
$\mathrm{Fe}(1)$	2516(4)	4858(3)	-306(1)	46́(1)
$\mathrm{Fe}(2)$	1014(4)	5482(3)	-1862(1)	54(1)
$\mathrm{Fe}(3)$	233(4)	5097(3)	1434(1)	65(1)
$\mathrm{Br}(1)$	-2656(4)	4732(3)	1178(1)	108(1)
$\mathrm{Br}(2)$	49(4)	6157(3)	2092(1)	92(1)
$\operatorname{Br}(3)$	1822(4)	3063(3)	1507(1)	100(1)
$\mathrm{Br}(4)$	1705(4)	6559(3)	974(1)	87(1)
C(1)	1219(22)	5460(17)	-847(6)	38(7)
C(2)	78(27)	4729(21)	-577(7)	66(9)
C(3)	- $110(26)$	5430(23)	-193(7)	77(10)
C(4)	1066(26)	6612(20)	-219(7)	56(6)
C(5)	1860(28)	6619(17)	-615(6)	53(8)
C(6)	4513(29)	3555(21)	-468(7)	73(7)
C(7)	3327(33)	2980(21)	- 176(9)	87(12)
C(8)	3378(29)	3765(22)	196(7)	62(9)
C(9)	4534(27)	4832(20)	138(7)	67(9)
C(10)	5205(28)	4736(22)	-300(8)	$79(10)$
C(11)	1933(27)	4997(19)	-1248(6)	48(7)
C(12)	1524(29)	3820(20)	-1476(6)	62(8)
C(13)	2520(31)	3758(25)	-1860(8)	81(10)
C(14)	3584(28)	4899(26)	-1853(7)	69(9)
C(15)	3323(29)	5671(22)	-1487(7)	64(9)
C(16)	-182(41)	7315(21)	-1953(8)	96(12)
C(17)	-1549(33)	6232(33)	-1850(9)	93(13)
C(18)	-1417(43)	5412(30)	-2188(10)	108(14)
C(19)	-14(50)	5755(29)	-2473(9)	109(14)
C(20)	649(39)	6916(25)	-2329(8)	101(13)

[^0]TABLE 3
SELECTED BOND DISIANCES AND ANGLES FOR $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Fe}_{3} \mathrm{Br}_{4}$

(a) Bond distances (A)			
$\mathrm{Fe}(1)-\mathrm{C}(1)$	2.062(18)	$\mathrm{Fe}(1)-\mathrm{C}(2)$	2.032(23)
$\mathrm{Fe}(1)-\mathrm{C}(3)$	2.071(21)	$\mathrm{Fe}(1)-\mathrm{C}(4)$	2.064(20)
$\mathrm{Fe}(1)-\mathrm{C}(5)$	2.052(18)	$\mathrm{Fe}(1)-\mathrm{C}(6)$	2.040(24)
$\mathrm{Fe}(1)-\mathrm{C}(7)$	2.014(21)	Fe(1)-C(8)	$2.029(23)$
$\mathrm{Fe}(1)-\mathrm{C}(9)$	2.065(24)	$\mathrm{Fe}(1)-\mathrm{C}(10)$	2.006(21)
$\mathrm{Fe}(2) \mathrm{C}(11)$	2.117(21)	$\mathrm{Fe}(2)-\mathrm{C}(12)$	2.108(24)
$\mathrm{Fe}(2)-\mathrm{C}(13)$	2.034(27)	$\mathrm{Fe}(2)-\mathrm{C}(14)$	$2.007(23)$
$\mathrm{Fe}(2)-\mathrm{C}(15)$	2.110(21)	$\mathrm{Fe}(2)-\mathrm{C}(16)$	2.055(24)
$\mathrm{Fe}(2)-\mathrm{C}(17)$	2.047(25)	$\mathrm{Fe}(2)-\mathrm{C}(18)$	2.120 (35)
$\mathrm{Fe}(2)-\mathrm{C}(19)$	2.061(31)	$\mathrm{Fe}(2)-\mathrm{C}(20)$	2.062(27)
$\mathrm{Fe}(3)-\mathrm{Br}(1)$	$2.339(5)$	$\mathrm{Fe}(3)-\mathrm{Br}(2)$	2.333(4)
$\mathrm{Fe}(3)-\operatorname{Br}(3)$	2.352(4)	$\mathrm{Fe}(3)-\mathrm{Br}(4)$	2.327(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.405(28)	$\mathrm{C}(1)-\mathrm{C}(5)$	1.454(25)
$\mathrm{C}(1)-\mathrm{C}(11)$	1.451(27)	$\mathrm{C}(2) \mathrm{C}(3)$	1.423(33)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.470(30)	C(4)-C(5)	1.381(29)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.408(36)	$\mathrm{C}(6)-\mathrm{C}(10)$	1.396(33)
C(7) $\mathrm{C}(8)$	1.411(35)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.404(31)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.483(33)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.412(31)
$\mathrm{C}(11)-\mathrm{C}(15)$	1.460(29)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.422(38)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.397(38)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.417(31)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.511(37)	C(16)-C(20)	1.373(39)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.354(44)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.431(52)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.317(44)	$\mathrm{Fe}(3)-\mathrm{Br}(1)$	2.340(4)
$\mathrm{Fe}(1)-\mathrm{CNT}(1){ }^{\text {a }}$	1.66(2)	$\mathrm{Fe}(3)-\mathrm{Br}(2)$	$2.333(4)$
Fe(1)-CNT(2)	1.64(2)	$\mathrm{Fe}(3)-\mathrm{Br}(3)$	2.351(4)
$\mathrm{Fe}(2)-\mathrm{CNT}(3)$	1.69(2)	$\mathrm{Fe}(3)-\mathrm{Br}(4)$	$2.330(4)$
$\mathrm{Fe}(2)-\mathrm{CNT}(4)$	1.69(2)		
(b) Bond angles (deg)			
$\mathrm{CNT}(1)-\mathrm{Fe}(1)-\mathrm{CNT}(2)$	179.5(5)	$\mathrm{Br}(1)-\mathrm{Fe}(3)-\mathrm{Br}(4)$	108.5(2)
CNT(3)-Fe(2)-CNT(4)	175.8(5)	$\mathrm{Br}(2)-\mathrm{Fe}(3)-\mathrm{Br}(3)$	109.2(2)
$\mathrm{Br}(1)-\mathrm{Fe}(3)-\mathrm{Br}(2)$	108.8(2)	$\mathrm{Br}(2)-\mathrm{Fe}(3) \mathrm{Br}(4)$	107.7(2)
$\mathrm{Br}(1)-\mathrm{Fe}(3)-\mathrm{Br}(3)$	111.7(2)	$\mathrm{Br}(3)-\mathrm{Fe}(3)-\mathrm{Br}(4)$	110.7(2)

${ }^{a} \mathrm{CNT}(1)=$ centroid $(\mathrm{C}(1)$ to $\mathrm{C}(5)), \mathrm{CNT}(2)=$ centroid $(\mathrm{C}(6)$ to $\mathrm{C}(10)), \mathrm{CNT}(3)=$ centroid $(\mathrm{C}(11)$ to $\mathrm{C}(15)$), $\mathrm{CNT}(4)=$ centroid $(\mathrm{C}(16)$ to $\mathrm{C}(20))$.

TABLE 4
LEAST-SQUARES PLANES FOR BIFERROCENIUM TETRABROMOFERRATE ${ }^{a}$

Plane I (C(1) to C(5)):	$0.7663 x-0.5311 y+0.3616 z+3.1223=0$
Plane II (C(6) to $\mathrm{C}(10)):$	$0.7624 x-0.5454 y+0.3482 z-0.1339=0$
Plane III (C(11) to $\mathrm{C}(15)):$	$0.7115 x-0.5135 y+0.4797 z+3.3826=0$
Plane IV (C(16) to C(20)):	$0.6731 x-0.5247 y+0.5211 z+7.0954=0$

Dihedral angles between planes (deg)

	II	III	IV
I	-1	7.5	10.6
II	-	8.3	11.2
III	-	-	3.3

[^1]and fixed in idealized positions $(d(\mathrm{C}-\mathrm{H}) 0.96 \AA$, thermal parameters equal 1.2 times the isotropic equivalent for the carbon atom to which it was attached). A multiplicative factor for $\Delta f^{\prime \prime}$ refined to $1.1(1)$ indicating that the reported enantiomorph is the correct one. The final difference Fourier synthesis showed only a diffuse background (maximum $1.16 \mathrm{e} / \AA^{3}$ located $1.21 \AA$ from $\operatorname{Br}(1)$ followed by nine peaks in the $1.1-0.9 \mathrm{e} / \AA^{3}$ range). An inspection of F_{0} vs. F_{c} values and trends based upon $\sin \theta$, Miller index or parity group failed to reveal any systematic error. All computer programs used in the data collection and refinement are contained in the Nicolet program packages P3, SHELXTL (version 3.0) and XP.

Atomic coordinates are provided in Table 2, and selected bond distances and angles in Table 3. Least squares planes for the C_{5} rings appear in Table 4.

Results and discussion

The structure of the biferrocenium cation of 1 is shown in Fig. 1. As has been observed in all other structures containing this cation, the Fe atoms adopt a trans relationship to the fulvenide ligand to avoid impossibly short $\mathrm{C}_{5} \mathrm{H}_{5} \cdots \mathrm{C}_{5} \mathrm{H}_{5}$ contacts [1-3]. The rings associated with the ferrocenyl units are staggered (Fig. 2); those associated with $\mathrm{Fe}(1)$ are nearly eclipsed with an average staggering angle of $6.5(3)^{\circ}$ (cf., 36° for perfect staggering) whereas those of $\mathrm{Fe}(2)$ are more staggered, average angle $23.5(3)^{\circ}$. The whole range of stagger angles, from 0 to 36° have been observed for both neutral and cationic ferrocenyl groups. Although there appears to be a tendency for neutral uncrowded ferrocenes to be either nearly or perfectly staggered in the solid state, and for ferrocenium ions to be eclipsed, the frequency of exceptions makes the use of this parameter as an indicator of oxidation state

Fig. 1. Molecular structure and labeling scheme for the biferrocenium cation. Hydrogen atoms deleted for clarity and thermal ellipsoids at 50% level.

Fig. 2. Structural views revealing the different staggering angles at $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$ as drawn without perspective.
unreliable. Barriers to ring rotation are low and the solid-state ring-ring rotational configurations are likely dominated by packing effects. Neutral biferrocene is staggered 17°, and 2, biferrocenium triiodide, is perfectly eclipsed [4].

The rings of each ferrocenyl unit are nearly parallel; at $\mathrm{Fe}(1)$, the dihedral angle is $1.1(5)^{\circ}$, at $\mathrm{Fe}(2), 3.3(5)^{\circ}$. Between ferrocenyl units, the angle is $7.5(5)^{\circ}$, whereas this angle is nearly zero in $2,0.3(3)^{\circ}$ [2]. In 2 , the average $\mathrm{Fe}-\mathrm{C}$ distance is 2.06(1) \AA, a value midway between those observed for ferrocene ($2.045 \AA$) [5] and the ferrocenium cation ($2.075 \AA$) [4,6-8]. In neutral biferrocene, the average $\mathrm{Fe}-\mathrm{C}$ distance is 2.03(2) \AA [9]. In the present study, the average $\mathrm{Fe}-\mathrm{C}$ distances are marginally different at the two Fe centers: $\mathrm{Fe}(1), 2.02(2) \AA ; \mathrm{Fe}(2), 2.08(2) \AA$. These results suggest a valence-localized description for 1 . The centroid-tó-centroid distance ($\mathbf{3 . 3 0 (2)} \AA$) at $\mathrm{Fe}(1)$ is significantly shorter than that found at $\mathrm{Fe}(2)$ (3.38(2) $\AA)$. The centroid-to-centroid distances are, within the quoted esd's, identical to those found in the mixed-valence compound exo,exo-1,12-dimethyl[1.1]ferrocenophanium triiodide [10], and indicate that $\mathrm{Fe}(1)$ is the $\mathrm{Fe}^{\mathrm{II}}$ state, and $\mathrm{Fe}(2)$, in the $\mathrm{Fe}^{\mathrm{III}}$ state.

A stereo packing diagram is shown in Fig. 3. If the cation structure contains trapped valences, the cation- anion packing in the crystal lattice should show a

Fig. 3. Stereoview of the unit-cell packing viewed down the a axis.
closer association of the anion with the higher charge of the $\mathrm{Fe}^{\mathrm{II}}$ "ferrocenium" site, i.e., $\mathrm{Fe}(2)$. For the regular tetrahedral structure of $\mathrm{FeBr}_{4}{ }^{-}$(see below) it is assumed that negative charge is equally distributed among the Br atoms. Two interionic contact distances, $\mathrm{Br} \cdots \mathrm{C}$ and $\mathrm{Br} \cdots \mathrm{Fe}(1$ or 2), have been chosen to serve as indicators of the relative closeness of ion approach. In the range 3.60 to $4.00 \AA$, there are eleven $\mathrm{Br} \cdots \mathrm{C}$ contacts to the rings of $\mathrm{Fe}(2)$ (av. $3.80 \AA$) and only three to the rings of $\mathrm{Fe}(1)$ (av. $3.88 \AA$); similarly, in the $4.50-5.00 \AA$ range of $\mathrm{Br} \cdots \mathrm{Fe}(1$ or 2) contacts, three are made to $\mathrm{Fe}(2)$, and one to $\mathrm{Fe}(1)$. This asymmetric placement of the anion relative to the mixed-valence cation is similar to that seen in exo,exo-1,12-dimethyl[1.1]ferrocenophanium triiodide [10]. The cations in 1 are packed in pairs with facing coparallel $\mathrm{C}_{5} \mathrm{H}_{5}$ rings. In 2 a similar stacking is found except that it is continued endlessly in a step-like pattern [2]. In neutral biferrocene, the molecules are more nested and overlapped with rings both top and bottom as found in stacked chairs [9].

The $\mathrm{FeBr}_{4}{ }^{-}$anion has an average $\mathrm{Fe}-\mathrm{Br}$ distance of 2.338(4) \AA and an average $\mathrm{Br}-\mathrm{Fe}-\mathrm{Br}$ angle of $109.4(2)^{\circ}$; both values are experimentally identical to those reported for $\left(\mathrm{H}_{3} \mathrm{CNH}_{3}\right)_{2}\left[\mathrm{FeBr}_{4}\right] \mathrm{Br}$ [11].

Acknowledgments

Support for the purchase of the X-ray diffractometer was received from NSF (U. of Del.). This research was partialiy funded by NIH grant HL 13652 to D.N.H.

References

1 M.J. Cohn, T.-Y. Dong, D.N. Hendrickson, S.J. Geib, and A.L. Rheingold, J. Chem. Soc., Chem. Commun., (1985) 1095.
2 T.-Y. Dong, D.N. Hendrickson, K. Iwai, M.J. Cohn, S.J. Geib, A.L. Rheingold, H. Sano, I. Motoyama, and S. Nakashima, J. Am. Chem. Soc., 107 (1985) 7996.
3 S. Iijima, R. Saida, I. Motoyama, and H. Sano, Bull. Chem. Soc., Japan, 54 (1981) 1375.
4 A.L. Rheingold, A.D. Uhler, and A.G. Landers, Inorg. Chem., 22 (1983) 3255, and ref. contained therein. Stagger angles calculated as the average torsion angle for (ring carbon atom)-(centroid)-(centroid)-(ring carbon atom).

5 P. Seiler, J.D. Dunitz, Acta Crystallogr., B, 35 (1979) 1068.
6 M.R. Churchill, A.G. Landers, and A.L. Rheingold, Inorg. Chem., 20 (1981) 849.
7 N.J. Mammano, A. Zalkin, A. Landers, and A.L. Rheingold, Inorg. Chem., 16 (1977) 297.
8 M.R. Churchill and J. Wormald, Inorg. Chem., 8 (1969) 716.
9 A.C. McDonald and J. Trotter, Acta Crystallogr., 17 (1964) 872.
10 M.F. Moore, S.K. Wilson, M.J. Lohn, T.-Y. Dong, U.T. Mueller-Westerhoff and D.N. Hendrickson, Inorg. Chem., 24 (1985) 4559.
11 G.D. Sproul and G.D. Stucky, Inorg. Chem., 11 (1972) 1647.

[^0]: ${ }^{a}$ Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

[^1]: " All atoms within each plane showed no deviation from planarity within esds ($\pm 0.02 \AA$).

